Технические характеристики мотор – редуктора: Обзор

Конструктивные особенности взрывозащищённых мотор-редукторов

Отдельный класс мотор-редукторов.

Они состоят из редуктора, взрывозащищённого электродвигателя или из редуктора, взрывозащищённого электродвигателя и взрывозащищённого тормоза, а также, могут изготовлены быть под частотное регулирование.

Мотор-редукторы данного вида подбираются по климатическому исполнению, классу взрывоопасной зоны, классу взрывоопасной смеси. 

Характеристики мотор-редуктора по умолчанию

  • на 380 Вольт,
  • климатическое исполнение У3 (электродвигатель У2),
  • степень защиты 1ЕхdIIBT4(класс взрывоопасной зоны 2).

Всё отличное от этого оговаривается при заказе.

Отличия от общепромышленного мотор-редуктора

  1. Главным отличием от общепромышленного мотор-редуктора является факт нормирование температуры нагрева корпуса, как электродвигателя, так и редуктора. Для температурного класса Т4 это 135 градусов, для температурного класса Т5 — 100 градусов, для температурного класса Т6 — 85 градусов. При этом указанные температуры должны быть при верхнем значении рабочей температуры окружающей среды. По этой причине червячные мотор-редукторы и фрикционные мотор-вариаторы в оборудовании с классом T6 не применяются, так как они могут нагреваться до 90-95 градусов. Температурный класс определяется как температура вспышки взрывоопасной смеси  минус 50 . В большинстве случаев хватает температурного класса Т4.
  2. Если общепромышленный электродвигатель комплектуется только одним типом кабельного ввода, то взрывозащищённый комплектуется несколькими типами в зависимости от типа кабеля и наличия металлорукава:
      • для обычного кабеля,
      • для бронированного кабеля,
      • для трубной прокладки,
      • для металлорукава.

    По умолчанию электродвигатель поставляется с кабельным вводом для обычного кабеля. Для зарубежных электродвигателей необходимо указывать тип кабеля, так как они комплектуются кабельным вводом сборщиком мотор-редуктора.

  3. Ещё одно отличие при заказе мотор-редуктора с тормозом. Тормоз может быть как в электродвигателе, так и отдельной единицей. Если тормоз является отдельной единицей, то он может крепиться между электродвигателем и редуктором, или на второй  входной конец вала редуктора (если это позволяет редуктор). Когда тормоз является отдельной единицей —  электродвигатель может быть российского производства. Когда тормоз отдельная единица, то температура эксплуатации мотор-редуктора может быть минус 50 градусов (без подогрева).
  4. Мотор-редуктор с электродвигателем, имеющем защиту 1ExdIICT4, может применяться и там, где требуется взрывозащита 1ExdIIBT4 (но, не наоборот). Мотор-редуктор с электродвигателем, имеющем защиту 1ExdIIBT4, может применяться там, где требуется взрывозащита  1ExdIIAT3 (но, не наоборот).

Работа от преобразователя частоты

Все мотор-редукторы с взрывозащищёнными электродвигателями могут работать от преобразователя частоты с диапазоном регулирования от 35 до 50 Гц без дополнительных опций. Работа в диапазоне регулирования от 5 до 50 Гц приводит к снижению мощности электродвигателя (или увеличению размеров электродвигателя при той же  мощности), или его оснащению дополнительными опциями, например, вентилятором.

Так, 3 кВт электродвигатель превращается в 1,9 кВт. Дополнительные опции в электродвигателях российского производства появляются в электродвигателях 132 габарита и выше. Электродвигатель с дополнительными опциями (вентилятор принудительного охлаждения) может работать и на частотах от 1 Гц. Если у вас диапазон регулирования 5-50 Гц, то момент редукторной части рассчитывается по мощности сетевого питания,то есть, по большей мощности с коррекцией (уменьшением) на 0,05 коэффициентов. В любом случае, момент на редукторе не должен быть выше 1,6 табличного во всех режимах работы мотор-редуктора. В противном случае, мотор-редуктор очень быстро выйдет из строя.

Следует отметить, что обдув редукторной части в мотор-редукторах имеющих крыльчатку на втором конце вала быстроходной ступени, с уменьшением частоты вращения электродвигателя также падает, что может привести к перегреву редуктора. Решением может быть только установка электровентилятора (взрывозащищённого) со стороны редукторной части.

Классификация мотор-редукторов

Сегодня существует несколько вариантов представленного приводного оборудования, но наиболее популярными являются следующие типы мотор редукторов:

  • червячные;
  • цилиндрические;
  • планетарные;
  • волновые.

Рассмотрим более подробно каждый из приведенных выше типов.

Червячный мотор редуктор – является оптимальным решением для механизмов, работающих в непрерывном или повторно-кратковременном режиме. Свою популярность такие агрегаты получили за счет неприхотливости привода, его удобства, а также широкого диапазона передаточных чисел – от 5 до 100. В работе червячные мотор редукторы показали себя как устройства с низким уровнем вибраций и шума

Важной особенностью «червяков» выступает опция самоторможения. Если такие агрегаты используются для поднятия груза, то в случае остановки или выхода из строя двигателя, редуктор остановится в одной точке, что предотвратит падение и повреждение груза

При этом вращение вала осуществляется в обе стороны. Эта характеристика особенно актуальна при использовании червячного мотор-редуктора в строительных, конвейерных, грузоподъемных и прочих системах.

Мотор редуктор цилиндрический сегодня пользуется наибольшей популярностью в промышленности и технике. Такие агрегаты характеризуются высоким КПД (превышает 90%), малой изнашиваемостью узлов и составляющих элементов, а также высокой эффективностью работы даже в самых неблагоприятных условиях. Можно выделить типичного представителя этого класса приводного оборудования – мотор редуктор 4МЦ2С. Привод предназначен для долговременной работы (в т.ч. круглосуточные режимы). Работает в сети 50-60Гц, различных мощностей.

Преимуществами цилиндрических мотор редукторов выступают:

  • вращение вала в обе стороны;
  • высокий КПД;
  • обширный диапазон режимов работы (на разных скоростях);
  • экономически оправданное использование мотор редукторов;
  • доступная цена;
  • удобство и оперативность выполнения установочных работ (плоский).

Волновой мотор редуктор является одним из самых современных и высокотехнологичных приводных агрегатов. Волновая передача эффективно сочетает проверенную надежность зубчатой передачи с динамикой гибких элементов

Такие механизмы имеют общепромышленное применение, характеризуются легкостью, компактностью и, что немаловажно, возможностью получения большого передаточного числа в условиях минимального количества движущихся частей

Преимущества волновых мотор редукторов:

  • возможность герметизировать узел, отделив его от электрического двигателя, в силу чего представленное приводное оборудование допускается использовать в запыленных цехах или в условиях взрывоопасных производств;
  • эффективная работа при любых нагрузках (не выше номинального значения);
  • оптимальная функциональность при высоких и низких давлениях;
  • возможность использования на высокоточных машинах;
  • отличная плавность хода.

Планетарный редуктор позволяет добиться оптимальных эксплуатационных характеристик при соосном расположении привода и двигателя. Такие агрегаты характеризуются наименьшим весом и высокой компактностью. Именно этот принцип лег в основу работы, к примеру, мотор редуктора стеклоочистителя автомобиля. Что же касается промышленности, то здесь чаще всего применяется моторы редуктор ЗПМ, подтверждающий на практике свои высокие эксплуатационные характеристики.

Преимущества планетарного мотор редуктора:

  • возможность изменения загруженности вала не только по величине, но и времени. Привод отлично справляется с прямой и реверсивной нагрузкой (номинальный режим работы);
  • продолжительность работы может составлять от 8 до 24 часов;
  • подходит для использования в условиях пониженных давлениях, эквивалентных подъему на высоту до 1000 м над уровнем моря;
  • возможность использования на высокоточных машинах;
  • адаптирован для эффективного использования в климате с широким температурным разбросом: -45 …. +45° С и повышенной влажностью. Тропические широты предполагают специальную настройку двигателя.

Выше приведена базовая классификационная группа мотор редукторов, на основе которых могут генерироваться приводы нового поколения. Ярким примером выступают цилиндро-конические мотор редукторы – разновидность мотор-редукторов по конструктивному выполнению рабочих элементов. Такие агрегаты набирают все большую популярность у покупателей и заказчиков в связи с удобным и компактным расположением корпуса редуктора. В свою очередь, мотор редуктор конический рационально использовать только в тех случаях, когда это требуют условия компоновки машины.

Виды редукторов

Данные устройства отличаются по типу передачи крутящего момента.

  • Червячные редукторы. Передаточная система этих устройств содержит червячную передачу, которая позволяет не только значительно уменьшить обороты рабочего вала, но и изменить направление вращения. Вал редуктора на выходе устройства, обычно расположен под прямым углом по отношению к входному валу. Такая особенность червячных устройств позволяет наиболее компактно разместить двигатель совместно с передающим крутящий момент механизмом. Передаточное число редуктора этого типа может быть до 1 к 100 и более;
  • Зубчатые редукторы. Зубчатые механизмы трансформации крутящего момента, часто применяются в агрегатах, в которых необходимо осуществить различное соотношение передаточного числа между входным и выходным валом. Устройство редуктора этого типа может выполнено с одним передаточным механизмом, или с использованием нескольких шестерён при значительном передаточном соотношении. Зубья, в таких устройствах, могут иметь различную форму, но качество обработки таких деталей должно быть наивысшим;
  • Гидравлические редукторы. Такие устройства устанавливаются между насосом и гидравлическими механизмами. Используется гидравлический редуктор с той же целью, что и механические — для уменьшения передаваемой энергии или частоты вращения;
  • Мотор-редуктор. Эта система также используется для трансформации крутящего момента и представляет собой объединённый в одном корпусе редуктор и двигатель. Наиболее часто встречаются мотор-редукторы, работающие на электрической тяге. В этом случае удаётся значительно уменьшить размер редуктора и увеличить КПД устройства;
  • Планетарные редукторы. Передающая система и схема редуктора планетарного типа, представляет собой разновидность зубчатого механизма, но благодаря оригинальности применяемого способа передачи крутящего момента может считаться отдельным видом. Такие механизмы компактны и очень надёжны в эксплуатации, но требуют точного расчёта при производстве. Зубья планетарных редукторов должны находиться в плотном зацеплении между собой, но легко приводиться в движение.

Рабочие части редукторов, обязательно должны работать в смазке, для снижения коэффициента трения и потери мощности. Способ нанесения смазочных материалов зависит от вида редуктора и мощности передаваемой энергии. Если передаточная система не работает в условиях повышенных скоростей вращения, то достаточно однократного нанесения смазки на рабочие поверхности в течение всего срока эксплуатации. Для мощных устройств применяется специальная система принудительной подачи смазочной жидкости, с последующим охлаждением и очисткой.

Изделия неразборного вида, как правило, работают при незначительных мощностных показателях и в тех сферах, где не требуется эксплуатации устройства в жёстких режимах. Редукторы, которые используются для трансформации больших мощностей располагаются в корпусе разборной конструкции, которая позволяет, в случае необходимости, осуществить плановый или экстренный ремонт и настройку механизма.

Корпус редуктора может быть изготовлен из различных материалов. Подбор материала зависит от условий эксплуатации и мощности устройства. Редуктор для маломощных устройств бытового назначения может быть сделан из высокопрочного пластика или алюминиевого сплава.

Достоинства и недостатки передач в зависимости от типа зубьев

А. Колеса прямозубые

Это наиболее распространенная разновидность зубчатых колес. Их зубья располагаются в плоскостях перпендикулярных по отношению оси вращения, а линия соприкосновения зубьев у шестерни проходит, наоборот, параллельно этой оси. Колеса с прямыми зубьями обладают наименьшей стоимостью, но они обеспечивают крутящий момент, максимальное значение которого немного меньше, чем могут создавать косозубые или шевронные. Кроме того, шестерни с такими зубьями больше шумят, чем шестерни с более сложными по форме зубьями.

Б. Косозубые и кривозубые колеса

Они представляют собой усовершенствованный вариант прямозубой шестерни. У них зубья расположены, если сравнивать с прямыми зубьями, под наклоном (или по кривой линии, в случае кривозубых колес), образуя подобие винтовой линии.

Преимущества

Зацепление колес происходит менее шумно, более эффективно и плавно, если сравнивать со случаем, когда используется прямозубый вариант шестерни. Площадь соприкосновения также больше, чем у прямозубой передачи, поэтому и значение максимального передаваемого момента также повышено.

Недостатки

Во время работы косозубого/кривозубого колеса появляется механическое усилие, сдвигающее его по оси, поэтому вал должен устанавливаться только с применением упорных подшипников, для предотвращения его горизонтального смещения. Увеличение площади соприкосновения зубьев ведет также к возрастанию силы трения между зубьями, что в свою очередь является причиной появления дополнительных потерь мощности и нагрева цилиндрического редуктора, а также снижения его кпд. Для уменьшения указанных негативных явлений и их компенсации требуется применение специальных смазочных материалов. Косозубые/кривозубые колеса применяют в основном там, где требуется передача значительных крутящих моментов особенно, если вал вращается с очень большой скоростью, и есть ограничения по степени шумности, которую создает соосный цилиндрический редуктор.

В. Шевронные колеса

Изобретение этих колес нередко приписывают французскому предпринимателю Ситроену, хотя он просто смог во время оценить и выкупить права на соответствующий патент у польского малоизвестного сегодня механика-самоучки. Зубья шевронных колес, если смотреть на них сверху, похожи по форме на английскую букву «V». Они могут выполняться либо как цельные детали, либо получаться за счет стыковки пары колес косозубого типа.

Применение шевронных колес позволяет решить проблему возникновения на валу осевой силы, так как направленные в разные стороны усилия, действующие на обе части таких колес компенсируют взаимно друг друга. В результате отпадает необходимость в упорных подшипниках, так как передача с использованием шевронных колес является самоустанавливающейся и не имеющей тенденции к появлению осевых сдвигов. Поэтому сборка цилиндрического редуктора, оснащенного шевронными колесами, выполняется с креплением одного из валов с помощью плавающих опор (например, с использованием подшипников с цилиндрическими роликами).

Что дает наличие у редуктора нескольких ступеней передачи?

В зависимости от количества ступеней цилиндрический зубчатый редуктор называется:

  • одноступенчатым;
  • двухступенчатым;
  • трёхступенчатым;
  • многоступенчатым.

Что делает редуктор

Само по себе слово редуктор в буквальном смысле означает понижение. Соответственно, редакторы были придуманы для того, чтобы понижать частоту вращения. При этом редуктор повышает мощность крутящего момента. Как уже было сказано нами в начале статьи, редукторы используют в автомобилях. Там они нужны для того, чтобы осуществлять понижение передачи и возврат. Этот принцип хорошо можно увидеть на примере работы передач велосипеда, где роль редуктора выполняют так называемые звездочки. Отметим, что сегодня редукторы используются не только в машинах, но и во многих двигателях, а также для снижения и поддержания давления рабочей среды, в том числе газа, пара и жидкости.

Принцип работы редукторов

Так как в основе работы редуктора лежит передача и преобразование крутящего момента, основной характеристикой механических редукторов является тип механической передачи, которая в них используется.

Типы передач:

  • Цилиндрическая зубчатая передача – один из самых надежных и долговечных типов передач, обеспечивающий высокий ресурс использования. Как правило, применяется в редукторах с особо сложным режимом работы. Этот тип передач подразделяется на прямозубные передачи, косозубчатые и шевронные передачи;
  • Коническая зубчатая передача – в отличие от предыдущей имеет оси входных и выходных валов, которые пересекаются друг с другом. Роторы с такой передачей используются когда необходимо изменить направление передаваемой кинетической энергии;
  • Червячная передача – это механическая передача от винта («червяка») к зубчатому колесу. Имеют достаточно высокое передаточное отношение и относительно низкое КПД. Бывают однозаходные и многозаходные;
  • Гипоидная передача (спироидная) – использует для передачи конические колёса со скрещивающимися осями (колеса могут иметь косые или криволинейные зубья). Такой тип передачи отличается низким шумом работы, плавностью хода и высокой нагрузочной способностью;
  • Цепная передача – как понятно из названия, использует гибкую цепь для передачи механической энергии. Состоит из двух звёздочек (ведущей и ведомой) и цепи, состоящей, в свою очередь, из подвижных звеньев. Это один из самых универсальных, простых и экономичных типов передач;
  • Ремённая передача – передача энергии при помощи гибкого ремня за счет силы трения или сил зацепления (в случае с зубчатыми ремнями). Состоит из ведущего и ведомого шкивов, а также приводного ремня. К преимуществам можно отнести недорогую стоимость, бесшумность и плавность работы, а также легкий монтаж и компенсацию перегрузок за счет проскальзывания;
  • Винтовая передача – преобразует поступательное движение во вращательное, и наоборот. Как правило, представляет собой конструкцию, состоящую из винта и гайки. Бывает передача качения и скольжения. Эта передача чаще используется не для перемещения, а для закрепления. Применяется в регулировочных винтах, приводах исполнительных органов механизмов, различных инструментах;
  • Волновая передача – относительно новый тип передач, характеризующийся очень высоким передаточным отношением. Работает за счёт генерирования волн на гибком колесе, оснащенным меньшим количеством зубьев чем жесткое колесо, и смещения колесо относительно друг друга на разницу зубьев за один оборот. Среди достоинств – малый вес, высокая кинематическая точность, способность передачи момента через герметичные стенки.

Число ступеней редуктора

Как правило, редукторы, состоящие только из одной передачи, встречаются крайне редко. Такой тип редукторов называется одноступенчатым. Куда больше распространение получили двух-трех и многоступенчатые редукторы, причем в таких редукторах могут встречаться как передачи одного типа, так и несколько различных передач, комбинированных между собой. Общее передаточное отношение редуктора напрямую зависит от типа используемой передачи и количества ступеней. В некоторых механизмах количество ступеней может до десятков и сотен тысяч.

Валы редуктора

Размещение различных передач в одном корпусе редуктора позволяет разместить опоры валов с очень точно соблюдённой соосностью и строго выдержанными межосевыми расстояниями. Передача крутящего момента может осуществляться между параллельными, пересекающимися и даже перекрещивающимися валами. Взаимное расположение валов определяет, какой именно тип передачи будет использоваться в данном редукторе. Так, например, для передачи вращения между валами, расположенными параллельно используются цилиндрические зубчатые передачи. Если валы пересекаются – применяют конические зубчатые передачи, а в случае с перекрещивающимися валами оптимальным будет применение червячных, зубчато-винтовых и гипоидных передач. По количеству возможных скоростей выходного вала редукторы можно разделить на механизмы с постоянным показателем передаточного отношения (односкоростные редукторы), а также на двух – и многоскоростные редукторы, с возможностью изменения передаточного отношения.

10. Принадлежности:

Односторонний и двухсторонний выходной вал.

d(h6) T T1 L1 Z Z1 m b1 t1
30 14 30 32.5 63 102 128 M6 5 16
40 18 40 43 78 128 164 М6 6 20.5
50 25 50 53.5 92 153 199 М10 8 28
63 25 50 53.5 112 173 219 М10 8 28
75 28 60 63.5 120 192 247 М10 8 31
90 35 80 84.5 140 234 309 М12 10 38
110 42 80 84.5 155 249 324 М16 12 45
130 45 80 85 170 265 340 М16 14 48.5
150 50 82 87 200 297 374 М16 14 53,5
Реактивная штанга.
L Н К D R В
30 85 14 24 8 15 4
40 100 14 31.5 10 18 4
50 100 14 36.5 10 18 4
63 150 14 49 10 18 6
75 200 25 47.5 20 30 6
90 200 25 57.5 20 30 6
110 250 30 62 25 35 6
130 250 30 69 25 35 6

Подшипники и манжетное уплотнение.

Тип Манжетноеуплотнение Манжетноеуплотнение Тип Манжетное уплотнение Подшипники Подшипники Подшипники
030 φ32X7 φ20Xφ30X7 030 φ25Xφ47X7 61904 6201 16005
040 φ40X7 φ25Xφ35X7 040 φ30Xφ40X7 6005 6203 6006
050 φ47X7 φ30Xφ47X7 050 φ40Xφ62X8 6006 6204 6008
063 φ52X7 φ35Xφ52X8 063 φ45Xφ65X8 6007 6205 6009
075 φ62X7 φ40Xφ60X8 075 φ50Xφ72X8 32008 30206 6010
090 φ62X7 φ40Xφ60X8 090 φ60Xφ85X8 32008 30206 6012
110 φ72X7 φ50Xφ68X8 110 φ65Xφ85X8 32010 32207 6013
130 φ72X7 φ50Xφ68X8 130 φ70Xφ90X8 32010 32207 6014
150 φ85X10 φ65Xφ90X10 150 φ90Xφ120X10 6013 6209 6018

7. Смазка и ремонт

Уплотнительный манжет валаЗамена смазочного материалаапрещеноТаблица 12.1 Периодичность смазки – часы

Температура(оС)
Тип нагрузки
Минеральное масло
Синтетическое масло
ВНИМАНИЕ:* размер 030–090поставляется снаполнителем
 60 постоянная 4000 длительная  60 прерывистая 6000  60 постоянная 2000 * размер 110–150поставляется снаполнителем
 60 прерывистая 4000

Очистка – не оказывает

Сорт маслаТемпература окруж. средыПроизводитель Минеральное масло
SHELL
OMALA EP 220 OMALA HD 220
ESSO SPARTAN EP 320 GLYCOLUBE 220
BP ENERGOL GR-XP 220 ENERSYN GP-XP 220
IP MELLANA 220 TELESIA 220
MOBIL MOBIL GEAR 630 GLYCOIL 30
OPTIMOL OPTIGEAR BM 220 OPTIFLEX A 220
PARAMO PARAMOL CLP 220
OMV GEAR HST 220 GEAR PG 460
CASTROL OPTIGEAR 220 OPTIFLEX 220
TOTAL CARTER EP/HT 220

Таблица 7.2 Количество смазочного материала

NMRV 030 040 050 063 075 090 110 130 150
B3 0,042 0,081 0,153 0,3 0,58 1,02 3,02 4,55 6,0
В8 2,25 3,35 5,0
В6,В7 2,55 3,55
V5,V6 3,02 4,55 6,0

Монтажные позиции.

Конструктивные особенности

Основой любого редуктора является зубчатое зацепление, передающее вращательный момент и изменяющее число оборотов вала. Для цилиндрических зацеплений характерна возможность вращаться в обе стороны. При необходимости ведомый вал с колесом подключается к двигателю и становится ведущим. Они в данной конструкции расположены параллельно, горизонтально и вертикально. Устройство цилиндрических редукторов может быть самое разное, но оно обязательно включает в свою конструкцию:

  • ведущий;
  • ведомый вал;
  • шестерню;
  • колесо;
  • подшипники;
  • корпус;
  • крышки;
  • систему смазки.

В простейшем одноступенчатом редукторе одна пара находится в зацеплении – шестерня и колесо. Если ступеней 2 и больше, соответственно увеличивается количество деталей. Появляются промежуточные оси. Для изменения направления вращения, в кинематическую схему включают паразитку, промежуточную шестерню с количеством зубьев как у ведущей.

Корпус и крышка отливаются из чугуна или делаются сварными из низкоуглеродистого листа толщиной 4 – 10 мм в зависимости от габаритов и мощности узла. Сварными делают маленькие редуктора. Остальные имеют крепкий литой корпус.

Характеристика цилиндрических редукторов

Количество зацеплений, тип зуба и взаимное расположение валов для всех видов оборудования описывает ГОСТ Редукторы цилиндрические. В нем указаны типоразмеры всех деталей, которые могут применяться в цилиндрических редукторах при различных количествах ступеней. Максимальное передаточное число одной пары 6,5. Общее многоступенчатого редуктора может быть до 70.

Больше чем у цилиндрического редуктора может быть передаточное число у червячной передачи,оно может достигать 80. При этом они компактные, но используются редко из-за низкого КПД. У цилиндрических одноступенчатых редукторов КПД 99 – 98%, самый высокий из всех видов передач.Отличаются червячные и цилиндрические редукторы расположением валов. Если у цилиндрических они параллельные, то червяк располагается к колесу под углом. Следовательно валы ведущий и ведомый выходят из перпендикулярно расположенных боковых стенок корпуса.

Для смазки достаточно залить масло в поддон, чтобы нижние шестерни в него частично погрузились. При вращении зубья захватывают масло и разбрызгивают его на другие детали.

Проектирование и порядок расчета

Расчет будущего редуктора начинается с определения передаточного момента и подборки его из нормированных пар. После этого уточняются диаметры деталей и межосевое расстояние валов. Составляется кинематическая схема, определяется оптимальная форма корпуса и крышки, номера подшипников. В сборочный чертеж входит кинематическая схема двухступенчатого редуктора, система смазки и способы ее контроля, типы подшипников и места их установки.

ГОСТ 16531-83 описывает все возможные виды и типоразмеры зубчатых колес, которые могут применяться в цилиндрических редукторах с указанием модуля, количества зубьев и диаметра. По размеру шестерни подбирается вал. Его прочность рассчитывается с учетом вращательного момента на скручивание и изгиб. Определяется минимальный размер, умножается на коэффициент прочности. Затем выбирается ближайший больший нормализованный размер вала. Шпонка рассчитывается только на срез и подбирается аналогично.

По диаметру вала выбирается подшипник. Его тип определяется направлением зуба. При косозубой передаче ставят упорные, более дорогие. Прямозубая передача не нагружает их в осевом направлении, и однорядные шарикоподшипники работают по несколько тысяч часов.

Схема сборки указывается на чертеже внизу и подробно расписывается в технологической документации, которая выдается в производство вместе с чертежами. На главном чертеже с общим видом в таблице указываются технические характеристики редуктора, которые затем переносятся в паспорт:

  • количество ступеней;
  • передаточное число;
  • число оборотов ведущего вала;
  • мощность на выходе;
  • КПД;
  • габариты;
  • вес.

Дополнительно могут указываться вертикальное расположение зацепления, направление вращение вала и способ установки: фланцевый или на лапах.

Конические и цилиндро-конические редукторы

Конические и цилиндро-конические редукторы передают момент между пересекающимися или скрещивающимися валами. В редукторах применяются шестерни в виде конуса с прямыми или косыми зубами. Конические редукторы имеют большую плавность зацепления, что позволяет им выдерживать большие нагрузки. Редукторы могут быть одно-, двух- и трехступенчатыми. Большое распространение получили цилиндро-конические редукторы, где общее передаточное отношение может достигать 315. Быстроходный и тихоходный валы редуктора могут располагаться горизонтально и вертикально. По типу кинематической схемы конические и цилиндро-конические редукторы могут быть развернутые или соосные.

На рисунке ниже представлены кинематические схемы конических редукторов:

А) Реверсивный конический редуктор. Смена направления вращения достигается установкой зубчатого колеса с противоположенной стороны конической шестерни.

Б) Реверсивный конический редуктор. Конические шестерни вращаются в разных направлениях. Подключение тихоходного вала к одной из конических шестеренок происходит за счет кулачковой муфты.

В) Двухступенчатый коническо-цилиндрический редуктор. Быстроходный и тихоходный валы находятся под прямым углом в одной плоскости.

Г) Двухступенчатый коническо-цилиндрический редуктор. Входной и выходные валы перекрещиваются и лежат в разных плоскостях.

Д) Трехступенчатый коническо-цилиндрический редуктор. Быстроходный и тихоходный валы находятся под прямым углом в одной плоскости.

Е) Трехступенчатый коническо-цилиндрический редуктор. Промежуточная и тихоходная цилиндрическая передача собраны по соосной схеме.

Конические редукторы широко используются в изделиях, где требуются передать высокий момент под прямым углом. В отличие от червячных редукторов, конические редукторы не имеют быстро изнашиваемого бронзового колеса, что позволяет работать им в тяжелых условиях длительное время. Также важным отличием является обратимость, возможность передавать вращение от тихоходного вала к быстроходному валу. Обратимость позволяет разгрузить редукторный механизм в отличие от червячного редуктора, что позволяет использовать конический редуктор в установках с высокой инерцией.

Поделитесь в социальных сетях:vKontakteFacebookTwitter
Напишите комментарий